Nvidia Llama 3.1 Nemotron Nano 8B v1
Approved Data Classifications
Description
Llama-3.1-Nemotron-Nano-8B-v1 is a large language model (LLM) which is a derivative of Meta Llama-3.1-8B-Instruct (AKA the reference model). It is a reasoning model that is post trained for reasoning, human chat preferences, and tasks, such as RAG and tool calling.
Llama-3.1-Nemotron-Nano-8B-v1 is a model which offers a great tradeoff between model accuracy and efficiency. It is created from Llama 3.1 8B Instruct and offers improvements in model accuracy. The model fits on a single RTX GPU and can be used locally. The model supports a context length of 128K.
This model underwent a multi-phase post-training process to enhance both its reasoning and non-reasoning capabilities. This includes a supervised fine-tuning stage for Math, Code, Reasoning, and Tool Calling as well as multiple reinforcement learning (RL) stages using REINFORCE (RLOO) and Online Reward-aware Preference Optimization (RPO) algorithms for both chat and instruction-following. The final model checkpoint is obtained after merging the final SFT and Online RPO checkpoints. Improved using Qwen.
The above was sourced from the following model card on hugging face: https://huggingface.co/nvidia/Llama-3.1-Nemotron-Nano-8B-v1
Capabilities
Model | Training Data | Input | Output | Context Length | Cost (per 1 million tokens) |
---|---|---|---|---|---|
llama-3.1-nemotron-nano-8B-v1 | 2023 | Text | Text | 128,000 | $0.22/1M input $0.22/1M output |
1M
represents 1 Million Tokens- All prices listed are based on 1 Million Tokens
Availability
Cloud Provider
Usage
- curl
- python
- javascript
curl -X POST https://api.ai.it.ufl.edu/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer <API_TOKEN>" \
-d '{
"model": "llama-3.1-nemotron-nano-8B-v1",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "Write a haiku about an Alligator."
}
]
}'
from openai import OpenAI
client = OpenAI(
api_key="your_api_key",
base_url="https://api.ai.it.ufl.edu/v1"
)
response = client.chat.completions.create(
model="llama-3.1-nemotron-nano-8B-v1", # model to send to the proxy
messages = [
{ role: "system", content: "You are a helpful assistant." },
{
"role": "user",
"content": "Write a haiku about an Alligator."
}
]
)
print(response.choices[0].message)
import OpenAI from 'openai';
const openai = new OpenAI({
apiKey: 'your_api_key',
baseURL: 'https://api.ai.it.ufl.edu/v1'
});
const completion = await openai.chat.completions.create({
model: "llama-3.1-nemotron-nano-8B-v1",
messages: [
{ role: "system", content: "You are a helpful assistant." },
{
role: "user",
content: "Write a haiku about an Alligator.",
},
],
});
print(completion.choices[0].message)